956 research outputs found

    Grid Cryptographic Simulation: A Simulator to Evaluate the Scalability of the X.509 Standard in the Smart Grid

    Get PDF
    PKI may be pushed beyond known limits when scaled to some visions of the smart grid; our research developed a simulation, Grid Cryptographic Simulation (GCS), to evaluate these potential issues, identify cryptographic bottlenecks, and evaluate tradeoffs between performance and security. Ultimately, GCS can be used to identify scalability challenges and suggest improvements to make PKI more efficient, effective, and scalable before it is deployed in the envisioned smart grid

    Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus 1 region

    Get PDF
    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 mum maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 mum with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics---including secondary filaments that often run orthogonally to the primary filament---and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core

    The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol

    Full text link
    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLAST-Pol is the reconstructed BLAST telescope, with the addition of linear polarization capability. Using a 1.8 m Cassegrain telescope, BLAST-Pol images the sky onto a focal plane that consists of 280 bolometric detectors in three arrays, observing simultaneously at 250, 350, and 500 um. The diffraction-limited optical system provides a resolution of 30'' at 250 um. The polarimeter consists of photolithographic polarizing grids mounted in front of each bolometer/detector array. A rotating 4 K achromatic half-wave plate provides additional polarization modulation. With its unprecedented mapping speed and resolution, BLAST-Pol will produce three-color polarization maps for a large number of molecular clouds. The instrument provides a much needed bridge in spatial coverage between larger-scale, coarse resolution surveys and narrow field of view, and high resolution observations of substructure within molecular cloud cores. The first science flight will be from McMurdo Station, Antarctica in December 2010.Comment: 14 pages, 9 figures Submitted to SPIE Astronomical Telescopes and Instrumentation Conference 201

    Cytogenetic analysis of an exposed-referent study: perchloroethylene-exposed dry cleaners compared to unexposed laundry workers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Significant numbers of people are exposed to tetrachloroethylene (perchloroethylene, PCE) every year, including workers in the dry cleaning industry. Adverse health effects have been associated with PCE exposure. However, investigations of possible cumulative cytogenetic damage resulting from PCE exposure are lacking.</p> <p>Methods</p> <p>Eighteen dry cleaning workers and 18 laundry workers (unexposed controls) provided a peripheral blood sample for cytogenetic analysis by whole chromosome painting. Pre-shift exhaled air on these same participants was collected and analyzed for PCE levels. The laundry workers were matched to the dry cleaners on race, age, and smoking status. The relationships between levels of cytological damage and exposures (including PCE levels in the shop and in workers' blood, packyears, cumulative alcohol consumption, and age) were compared with correlation coefficients and t-tests. Multiple linear regressions considered blood PCE, packyears, alcohol, and age.</p> <p>Results</p> <p>There were no significant differences between the PCE-exposed dry cleaners and the laundry workers for chromosome translocation frequencies, but PCE levels were significantly correlated with percentage of cells with acentric fragments (R<sup>2 </sup>= 0.488, p < 0.026).</p> <p>Conclusions</p> <p>There does not appear to be a strong effect in these dry cleaning workers of PCE exposure on persistent chromosome damage as measured by translocations. However, the correlation between frequencies of acentric fragments and PCE exposure level suggests that recent exposures to PCE may induce transient genetic damage. More heavily exposed participants and a larger sample size will be needed to determine whether PCE exposure induces significant levels of persistent chromosome damage.</p

    BLAST: The Mass Function, Lifetimes, and Properties of Intermediate Mass Cores from a 50 Square Degree Submillimeter Galactic Survey in Vela (l = ~265)

    Full text link
    We present first results from an unbiased 50 deg^2 submillimeter Galactic survey at 250, 350, and 500 micron from the 2006 flight of the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The map has resolution ranging from 36 arcsec to 60 arcsec in the three submillimeter bands spanning the thermal emission peak of cold starless cores. We determine the temperature, luminosity, and mass of more than one thousand compact sources in a range of evolutionary stages and an unbiased statistical characterization of the population. From comparison with C^(18)O data, we find the dust opacity per gas mass, kappa r = 0.16 cm^2 g^(-1) at 250 micron, for cold clumps. We find that 2% of the mass of the molecular gas over this diverse region is in cores colder than 14 K, and that the mass function for these cold cores is consistent with a power law with index alpha = -3.22 +/- 0.14 over the mass range 14 M_sun < M < 80 M_sun. Additionally, we infer a mass-dependent cold core lifetime of t_c(M) = 4E6 (M/20 M_sun)^(-0.9) years - longer than what has been found in previous surveys of either low or high mass cores, and significantly longer than free fall or likely turbulent decay times. This implies some form of non-thermal support for cold cores during this early stage of star formation.Comment: Accepted for publication in the Astrophysical Journal. Maps available at http://blastexperiment.info

    The Atacama Cosmology Telescope: The polarization-sensitive ACTPol instrument

    Get PDF
    The Atacama Cosmology Telescope (ACT) is designed to make high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3 degree field of view, 100 mK cryogenics with continuous cooling, and meta material anti-reflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich and kinetic Sunyaev-Zel'dovich signals, and CMB lensing due to large scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems

    The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    Get PDF
    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region

    Intracellular neutralization of viral infection in polarized epithelial cells by neonatal Fc receptor (FcRn)-mediated IgG transport

    Get PDF
    IgG was traditionally thought to neutralize virions by blocking their attachment to or penetration into mucosal epithelial cells, a common site of exposure to viruses. However, we describe an intracellular neutralizing action for an influenza hemagglutinin-specific monoclonal antibody, Y8-10C2 (Y8), which has neutralizing activity only at an acidic pH. When Y8 was applied to the basolateral surface of Madin–Darby canine kidney cells expressing the rat neonatal Fc receptor for IgG (FcRn), it significantly reduced viral replication following apical exposure of the cell monolayer to influenza virus. Virus neutralization by Y8 mAb was dependent on FcRn expression and its transport of IgG. As both FcRn and Y8 mAb bind their partners only at acidic pH, the Y8 mAb is proposed to carry out its antiviral activity intracellularly. Furthermore, the virus, Y8 mAb, and FcRn colocalized within endosomes, possibly inhibiting the fusion of viral envelopes with endosomal membranes during primary uncoating, and preventing the accumulation of the neutralized viral nucleoprotein antigen in the nucleus. Prophylactic administration of Y8 mAb before viral challenge in WT mice, but not FcRn-KO mice, conferred protection from lethality, prevented weight loss, resulted in a significant reduction in pulmonary virus titers, and largely reduced virus-induced lung pathology. Thus, this study reveals an intracellular mechanism for viral neutralization in polarized epithelial cells that is dependent on FcRn-mediated transport of neutralizing IgG
    corecore